Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Med (Lausanne) ; 9: 1083806, 2022.
Article in English | MEDLINE | ID: covidwho-2243969

ABSTRACT

Complicated pregnancies are nowadays a major public health concern, with possible lethality or sequelae both for the mother and the fetus. Blood coagulation disorders (including antiphospholipid syndrome, factor V Leiden mutation and antithrombin deficiency) and hypertensive gestational disorders are very well-known contributors of complicated pregnancies with poor fetal outcome, such as intrauterine growth retardation (IUGR) and fetal demise. Less commonly, vascular malformations of the placenta can also potentially lead to serious complications such as IUGR and fetal death. These malformations include hypercoiled umbilical cord, umbilical cord knot, umbilical cord varix, umbilical cord arterial or venous aneurysm, and velamentous insertion of the umbilical cord potentially leading to Benckiser's hemorrhage. Here, we report the case of a 29-year-old Gravida 2 Para 0 mother with previous history of stillbirth and smoking, admitted to the obstetrics department for the absence of fetal movement at 38 weeks of amenorrhea (WA). First-trimester and second-trimester routine ultrasounds were otherwise normal. Ultrasound performed at 38 WA revealed a 83 × 66 × 54 mm cystic heterogenous mass at the umbilical cord insertion. After delivery, fetal and placental pathology as well as maternal blood testing were performed. Fetal pathology was otherwise normal, except for diffuse congestion and meconial overload suggesting acute fetal distress. Fetal karyotype was normal (46 XX). Placental pathology revealed an umbilical artery aneurysm (UAA) at the base of the insertion of the umbilical cord, lined with a CD34+ CD31+ endothelium. After dissection, the aneurysm was filled with hemorrhagic debris, indicating aneurysm thrombosis. Histopathology revealed associated maternal vascular malperfusion (MVM) and increased peri-villous fibrin (IPF). Maternal blood tests revealed heterozygous factor V Leiden mutation, without other associated auto-immune conditions (such as antiphospholipid syndrome). Umbilical artery aneurysms remain extremely rare findings in the placenta, with <20 reported cases. Umbilical artery aneurysms have tendency to be located at the base of the insertion of the placenta, and lead to fetal demise in more than 60% of cases, mainly due to aneurysmal thrombosis, hematoma, possible vascular compression and/or rupture. Umbilical vessel aneurysms can be associated with trisomy 18 or 13. In our case, the association of factor V Leiden mutation, a hypercoagulable state, with UAA could explain massive thrombosis of the aneurysmal lumen and sudden fetal demise. Further consideration of current guidelines for surveillance and management of UAA would allow appropriate planned delivery in maternal care settings.

2.
Eur J Neurol ; 30(5): 1335-1345, 2023 05.
Article in English | MEDLINE | ID: covidwho-2242342

ABSTRACT

BACKGROUND AND PURPOSE: Cerebral venous sinus thrombosis due to vaccine-induced immune thrombotic thrombocytopenia (CVST-VITT) is an adverse drug reaction occurring after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. CVST-VITT patients often present with large intracerebral haemorrhages and a high proportion undergoes decompressive surgery. Clinical characteristics, therapeutic management and outcomes of CVST-VITT patients who underwent decompressive surgery are described and predictors of in-hospital mortality in these patients are explored. METHODS: Data from an ongoing international registry of patients who developed CVST within 28 days of SARS-CoV-2 vaccination, reported between 29 March 2021 and 10 May 2022, were used. Definite, probable and possible VITT cases, as defined by Pavord et al. (N Engl J Med 2021; 385: 1680-1689), were included. RESULTS: Decompressive surgery was performed in 34/128 (27%) patients with CVST-VITT. In-hospital mortality was 22/34 (65%) in the surgical and 27/94 (29%) in the non-surgical group (p < 0.001). In all surgical cases, the cause of death was brain herniation. The highest mortality rates were found amongst patients with preoperative coma (17/18, 94% vs. 4/14, 29% in the non-comatose; p < 0.001) and bilaterally absent pupillary reflexes (7/7, 100% vs. 6/9, 67% with unilaterally reactive pupil, and 4/11, 36% with bilaterally reactive pupils; p = 0.023). Postoperative imaging revealed worsening of index haemorrhagic lesion in 19 (70%) patients and new haemorrhagic lesions in 16 (59%) patients. At a median follow-up of 6 months, 8/10 of surgical CVST-VITT who survived admission were functionally independent. CONCLUSIONS: Almost two-thirds of surgical CVST-VITT patients died during hospital admission. Preoperative coma and bilateral absence of pupillary responses were associated with higher mortality rates. Survivors often achieved functional independence.


Subject(s)
COVID-19 Vaccines , COVID-19 , Purpura, Thrombocytopenic, Idiopathic , Sinus Thrombosis, Intracranial , Thrombocytopenia , Humans , Coma , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Sinus Thrombosis, Intracranial/chemically induced , Sinus Thrombosis, Intracranial/surgery , Thrombocytopenia/chemically induced , Thrombocytopenia/surgery , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/surgery
3.
Ann Neurol ; 92(4): 562-573, 2022 10.
Article in English | MEDLINE | ID: covidwho-1885378

ABSTRACT

OBJECTIVE: Cerebral venous thrombosis (CVT) caused by vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare adverse effect of adenovirus-based severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccines. In March 2021, after autoimmune pathogenesis of VITT was discovered, treatment recommendations were developed. These comprised immunomodulation, non-heparin anticoagulants, and avoidance of platelet transfusion. The aim of this study was to evaluate adherence to these recommendations and its association with mortality. METHODS: We used data from an international prospective registry of patients with CVT after the adenovirus-based SARS-CoV-2 vaccination. We analyzed possible, probable, or definite VITT-CVT cases included until January 18, 2022. Immunomodulation entailed administration of intravenous immunoglobulins and/or plasmapheresis. RESULTS: Ninety-nine patients with VITT-CVT from 71 hospitals in 17 countries were analyzed. Five of 38 (13%), 11 of 24 (46%), and 28 of 37 (76%) of the patients diagnosed in March, April, and from May onward, respectively, were treated in-line with VITT recommendations (p < 0.001). Overall, treatment according to recommendations had no statistically significant influence on mortality (14/44 [32%] vs 29/55 [52%], adjusted odds ratio [OR] = 0.43, 95% confidence interval [CI] = 0.16-1.19). However, patients who received immunomodulation had lower mortality (19/65 [29%] vs 24/34 [70%], adjusted OR = 0.19, 95% CI = 0.06-0.58). Treatment with non-heparin anticoagulants instead of heparins was not associated with lower mortality (17/51 [33%] vs 13/35 [37%], adjusted OR = 0.70, 95% CI = 0.24-2.04). Mortality was also not significantly influenced by platelet transfusion (17/27 [63%] vs 26/72 [36%], adjusted OR = 2.19, 95% CI = 0.74-6.54). CONCLUSIONS: In patients with VITT-CVT, adherence to VITT treatment recommendations improved over time. Immunomodulation seems crucial for reducing mortality of VITT-CVT. ANN NEUROL 2022;92:562-573.


Subject(s)
COVID-19 , Intracranial Thrombosis , Venous Thrombosis , Adenoviridae , Anticoagulants/therapeutic use , COVID-19 Vaccines/adverse effects , Humans , Immunoglobulins, Intravenous/therapeutic use , SARS-CoV-2 , Vaccination/adverse effects , Venous Thrombosis/complications
4.
Anaesth Crit Care Pain Med ; 40(6): 100963, 2021 12.
Article in English | MEDLINE | ID: covidwho-1471855

ABSTRACT

Argatroban is a direct anti-IIa (thrombin) anticoagulant, administered as a continuous intravenous infusion; it has been approved in many countries for the anticoagulant management of heparin-induced thrombocytopaenia (HIT). Argatroban was recently proposed as the non-heparin anticoagulant of choice for the management of patients diagnosed with Vaccine-induced Immune Thrombotic Thrombocytopaenia (VITT). Immunoglobulins are also promptly intravenously administered in order to rapidly improve platelet count; concomitant therapy with steroids is also often considered. An ad hoc committee of the French Working Group on Haemostasis and Thrombosis members has worked on updated and detailed proposals regarding the management of anticoagulation with argatroban, based on previously released guidance for HIT, and adapted for VITT. In case of VITT, the initial dose to be preferred is 1.0 µg × kg-1 × min-1, with further dose-adjustments based on iterative and frequent clinical and laboratory assessments. It is strongly advised to involve a health practitioner experienced in the management of difficult cases in haemostasis. The first laboratory assessment should be performed 4 h after the initiation of argatroban infusion, with further controls at 2-4-h intervals until steady state, and at least once daily thereafter. Importantly, full anticoagulation should be rapidly achieved in case of widespread thrombosis. Cerebral vein thrombosis (which is typical of VITT) should not call for an overly cautious anticoagulation scheme. Argatroban administration requires baseline laboratory assessment and should rely on an anti-IIa assay to derive argatroban plasma levels using a dedicated calibration, with a target range between 0.5 and 1.5 µg/mL. Target argatroban plasma levels can be refined based on meticulous appraisal of risk factors for bleeding and thrombosis, on frequent reassessments of clinical status with appropriate vascular imaging, and on the changes in daily platelet counts. Regarding the use of aPTT, baseline value and possible causes for alterations of the clotting time must be taken into account. Specifically, in case of VITT, an aPTT ratio (patient's/mean normal clotting time) between 1.5 and 2.5 is suggested, to be refined according to the sensitivity of the reagent to the effect of a direct thrombin inhibitor. The sole use of aPTT is discouraged: one has to resort to a periodical check with an anti-IIa assay at least, with the help of a specialised laboratory if necessary. Dose modifications should proceed in a stepwise manner with 0.1 to 0.2 µg × kg-1 × min-1 up- or downward changes, taking into account the initial dose, laboratory results, and the whole individual setting. Nomograms are available to adjust the infusion rate. Haemoglobin level, platelet count, fibrinogen plasma level and liver tests should be periodically checked, depending on the clinical status, the more so when unstable.


Subject(s)
Thrombocytopenia , Thrombosis , Vaccines , Arginine/analogs & derivatives , Humans , Pipecolic Acids , Sulfonamides , Thrombocytopenia/chemically induced , Thrombocytopenia/therapy
5.
Front Med (Lausanne) ; 8: 675191, 2021.
Article in English | MEDLINE | ID: covidwho-1369670

ABSTRACT

Rationale: COVID-19 displays distinct characteristics that suggest a unique pathogenesis. The objective of this study was to compare biomarkers of coagulopathy and outcomes in COVID-19 and non-COVID-19 patients with severe pneumonia. Methods: Thirty-six non-COVID-19 and 27 COVID-19 non-immunocompromised patients with severe pneumonia were prospectively enrolled, most requiring intensive care. Clinical and biological characteristics (including plasma biomarkers of coagulopathy) were compared. Results: At similar baseline severity, COVID-19 patients required mechanical ventilation (MV) for significantly longer than non-COVID-19 patients (p = 0.0049) and more frequently developed venous thrombotic complications (p = 0.031). COVID-19 patients had significantly higher plasma concentrations of soluble VCAM1 (sVCAM1) (5,739 ± 3,293 vs. 3,700 ± 2,124 ng/ml; p = 0.009), but lower levels of D-dimers, vWF-A2, sICAM1, sTREM1, VEGF, and P-selectin, compared to non-COVID-19 patients. Principal component analysis identified two main patterns, with a clear distinction between non-COVID-19 and COVID-19 patients. Multivariable regression analysis confirmed that sVCAM1 rising levels were independently associated with a longer duration of MV. Finally, we identified close correlations between sVCAM1 and some features of COVID-19 immune dysregulation (ie. CXCL10, GM-CSF, and IL-10). Conclusion: We identified specific features of the coagulopathy signature in severe COVID-19 patients, with higher plasma sVCAM1 levels, that were independently associated with the longer duration of mechanical ventilation. Clinical Trial Registration:ClinicalTrials.gov, identifier: NCT03505281.

SELECTION OF CITATIONS
SEARCH DETAIL